OG2018 RC30 2x
Quiz Summary
0 of 3 Questions completed
Questions:
Information
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
Results
Results
0 of 3 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Average score |
|
Your score |
|
Categories
- Not categorized 0%
-
Review these RC quizzes right after you do them. For anything that you’re not 100% on google the first bunch of words of the question and seek out explanations online. If after spending some time reviewing you’re still having a tough time then bring the question to your next tutoring session. Really fight to understand the logic of these questions. Remember: 1 is correct 4 are incorrect. Really push yourself to be black and white with correct v. incorrect. It is extremely rare that two answer choices are technically OK but one is stronger. It can happen but we’re talking 1% of the time. So, with that in mind let’s have the mindset that it never happens and that we need to be binary: 1 correct. 4 incorrect. That mindset is key to improvement.
Answer Key:
OG2018 RC30 Q1 – E
OG2018 RC30 Q2 – D
OG2018 RC30 Q3 – C
- 1
- 2
- 3
- Current
- Review
- Answered
- Correct
- Incorrect
-
Question 1 of 3
1. Question
Most attempts by physicists to send particles faster than the speed of light involve a remarkable phenomenon called quantum tunneling, in which particles travel through solid barriers that appear to be impenetrable. lf you throw a ball at a wall, you expect it to bounce back, not to pass straight through it. Yet subatomic particles perform the equivalent feat. Quantum theory says that there is a distinct, albeit small, probability that such a particle will tunnel its way through a barrier; the probability declines exponentially as the thickness of the barrier increases. Though the extreme rapidity of quantum tunneling was noted as early as 1932, not until 1955 was it hypothesized-by Wigner and Eisenbud-that tunneling particles sometimes travel faster than light. Their grounds were calculations that suggested that the time it takes a particle to tunnel through a barrier increases with the thickness of the barrier until tunneling time reaches a maximum; beyond that maximum, tunneling time stays the same regardless of barrier thickness. This would imply that once maximum tunneling time is reached, tunnelling speed will increase without limit as barrier thickness increases. Several recent experiments have supported this hypothesis that tunneling particles sometimes reach superluminal speed. According to measurements performed by Raymond Chiao and colleagues, for example, photons can pass through an optical filter at 1.7 times the speed of light.
1. The author of the passage mentions calculations about tunneling time and barrier thickness in order to
CorrectIncorrect -
Question 2 of 3
2. Question
Most attempts by physicists to send particles faster than the speed of light involve a remarkable phenomenon called quantum tunneling, in which particles travel through solid barriers that appear to be impenetrable. lf you throw a ball at a wall, you expect it to bounce back, not to pass straight through it. Yet subatomic particles perform the equivalent feat. Quantum theory says that there is a distinct, albeit small, probability that such a particle will tunnel its way through a barrier; the probability declines exponentially as the thickness of the barrier increases. Though the extreme rapidity of quantum tunneling was noted as early as 1932, not until 1955 was it hypothesized-by Wigner and Eisenbud-that tunneling particles sometimes travel faster than light. Their grounds were calculations that suggested that the time it takes a particle to tunnel through a barrier increases with the thickness of the barrier until tunneling time reaches a maximum; beyond that maximum, tunneling time stays the same regardless of barrier thickness. This would imply that once maximum tunneling time is reached, tunnelling speed will increase without limit as barrier thickness increases. Several recent experiments have supported this hypothesis that tunneling particles sometimes reach superluminal speed. According to measurements performed by Raymond Chiao and colleagues, for example, photons can pass through an optical filter at 1.7 times the speed of light.
2. The passage implies that if tunneling time reached no maximum in increasing with barrier thickness, then
CorrectIncorrect -
Question 3 of 3
3. Question
Most attempts by physicists to send particles faster than the speed of light involve a remarkable phenomenon called quantum tunneling, in which particles travel through solid barriers that appear to be impenetrable. lf you throw a ball at a wall, you expect it to bounce back, not to pass straight through it. Yet subatomic particles perform the equivalent feat. Quantum theory says that there is a distinct, albeit small, probability that such a particle will tunnel its way through a barrier; the probability declines exponentially as the thickness of the barrier increases. Though the extreme rapidity of quantum tunneling was noted as early as 1932, not until 1955 was it hypothesized-by Wigner and Eisenbud-that tunneling particles sometimes travel faster than light. Their grounds were calculations that suggested that the time it takes a particle to tunnel through a barrier increases with the thickness of the barrier until tunneling time reaches a maximum; beyond that maximum, tunneling time stays the same regardless of barrier thickness. This would imply that once maximum tunneling time is reached, tunnelling speed will increase without limit as barrier thickness increases. Several recent experiments have supported this hypothesis that tunneling particles sometimes reach superluminal speed. According to measurements performed by Raymond Chiao and colleagues, for example, photons can pass through an optical filter at 1.7 times the speed of light.
3. Which of the following statements about the earliest scientific investigators of quantum tunneling can be inferred from the passage?
CorrectIncorrect