OG2018 RC14 2x
Quiz Summary
0 of 6 Questions completed
Questions:
Information
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
Results
Results
0 of 6 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Average score |
|
Your score |
|
Categories
- Not categorized 0%
-
Review these RC quizzes right after you do them. For anything that you’re not 100% on google the first bunch of words of the question and seek out explanations online. If after spending some time reviewing you’re still having a tough time then bring the question to your next tutoring session. Really fight to understand the logic of these questions. Remember: 1 is correct 4 are incorrect. Really push yourself to be black and white with correct v. incorrect. It is extremely rare that two answer choices are technically OK but one is stronger. It can happen but we’re talking 1% of the time. So, with that in mind let’s have the mindset that it never happens and that we need to be binary: 1 correct. 4 incorrect. That mindset is key to improvement.
Answer Key:
OG2018 RC14 Q1 – C
OG2018 RC14 Q2 – A
OG2018 RC14 Q3 – B
OG2018 RC14 Q4 – D
OG2018 RC14 Q5 – E
OG2018 RC14 Q6 – C
- 1
- 2
- 3
- 4
- 5
- 6
- Current
- Review
- Answered
- Correct
- Incorrect
-
Question 1 of 6
1. Question
A small number of the forest species of lepidoptera (moths and butterflies, which exist as caterpillars during most of their life cycle) exhibit regularly recurring patterns of population growth and decline-such fluctuations in population are known as population cycles. Although many different variables influence population levels, a regular pattern such as a population cycle seems to imply a dominant, driving force. ldentification of that driving force, however, has proved surprisingly elusive despite considerable research. The common approach of studying causes of population cycles by measuring the mortality caused by different agents, such as predatory birds or parasites, has been unproductive in the case of lepidoptera. Moreover, population ecologists’ attempts to alter cycles by changing the caterpillars’ habitat and by reducing caterpillar populations have not succeeded. ln short, the evidence implies that these insect populations, if not self-regulating, may at least be regulated by an agent more intimately connected with the insect than are predatory birds or parasites.
Recent work suggests that this agent may be a virus. For many years, viral disease had been reported in declining populations of caterpillars, but population ecologists had usually considered viral disease to have contributed to the decline once it was underway rather than to have initiated it. The recent work has been made possible by new techniques of molecular biology that allow viral DNA to be detected at low concentrations in the environment. Nuclear polyhedrosis viruses are hypothesized to be the driving force behind population cycles in lepidoptera in part because the viruses themselves follow an infectious cycle in which, if protected from direct sunlight, they may remain virulent for many years in the environment, embedded in durable crystals of polyhedrin protein. 0nce ingested by a caterpillar, the crystals dissolve, releasing the virus to infect the insect’s cells. Late in the course of the infection, millions of new virus particles are formed and enclosed in polyhedrin crystals. These crystals re-enter the environment after the insect dies and decomposes, thus becoming available to infect other caterpillars.
One of the attractions of this hypothesis is its broad applicability. Remarkably, despite significant differences in habitat and behavior, many species of lepidoptera have population cycles of similar length, between eight and eleven years. Nuclear polyhedrosis viral infection is one factor these disparate species share.
1. The primary purpose of the passage is to
CorrectIncorrect -
Question 2 of 6
2. Question
A small number of the forest species of lepidoptera (moths and butterflies, which exist as caterpillars during most of their life cycle) exhibit regularly recurring patterns of population growth and decline-such fluctuations in population are known as population cycles. Although many different variables influence population levels, a regular pattern such as a population cycle seems to imply a dominant, driving force. ldentification of that driving force, however, has proved surprisingly elusive despite considerable research. The common approach of studying causes of population cycles by measuring the mortality caused by different agents, such as predatory birds or parasites, has been unproductive in the case of lepidoptera. Moreover, population ecologists’ attempts to alter cycles by changing the caterpillars’ habitat and by reducing caterpillar populations have not succeeded. ln short, the evidence implies that these insect populations, if not self-regulating, may at least be regulated by an agent more intimately connected with the insect than are predatory birds or parasites.
Recent work suggests that this agent may be a virus. For many years, viral disease had been reported in declining populations of caterpillars, but population ecologists had usually considered viral disease to have contributed to the decline once it was underway rather than to have initiated it. The recent work has been made possible by new techniques of molecular biology that allow viral DNA to be detected at low concentrations in the environment. Nuclear polyhedrosis viruses are hypothesized to be the driving force behind population cycles in lepidoptera in part because the viruses themselves follow an infectious cycle in which, if protected from direct sunlight, they may remain virulent for many years in the environment, embedded in durable crystals of polyhedrin protein. 0nce ingested by a caterpillar, the crystals dissolve, releasing the virus to infect the insect’s cells. Late in the course of the infection, millions of new virus particles are formed and enclosed in polyhedrin crystals. These crystals re-enter the environment after the insect dies and decomposes, thus becoming available to infect other caterpillars.
One of the attractions of this hypothesis is its broad applicability. Remarkably, despite significant differences in habitat and behavior, many species of lepidoptera have population cycles of similar length, between eight and eleven years. Nuclear polyhedrosis viral infection is one factor these disparate species share.
2. lt can be inferred from the passage that the mortality caused by agents such as predatory birds or parasites was measured in an attempt to
CorrectIncorrect -
Question 3 of 6
3. Question
A small number of the forest species of lepidoptera (moths and butterflies, which exist as caterpillars during most of their life cycle) exhibit regularly recurring patterns of population growth and decline-such fluctuations in population are known as population cycles. Although many different variables influence population levels, a regular pattern such as a population cycle seems to imply a dominant, driving force. ldentification of that driving force, however, has proved surprisingly elusive despite considerable research. The common approach of studying causes of population cycles by measuring the mortality caused by different agents, such as predatory birds or parasites, has been unproductive in the case of lepidoptera. Moreover, population ecologists’ attempts to alter cycles by changing the caterpillars’ habitat and by reducing caterpillar populations have not succeeded. (18) ln short, the evidence implies that these insect populations, if not self-regulating, may at least be regulated by an agent more intimately connected with the insect than are predatory birds or parasites. (22)
Recent work suggests that this agent may be a virus. For many years, viral disease had been reported in declining populations of caterpillars, but population ecologists had usually considered viral disease to have contributed to the decline once it was underway rather than to have initiated it. The recent work has been made possible by new techniques of molecular biology that allow viral DNA to be detected at low concentrations in the environment. Nuclear polyhedrosis viruses are hypothesized to be the driving force behind population cycles in lepidoptera in part because the viruses themselves follow an infectious cycle in which, if protected from direct sunlight, they may remain virulent for many years in the environment, embedded in durable crystals of polyhedrin protein. 0nce ingested by a caterpillar, the crystals dissolve, releasing the virus to infect the insect’s cells. Late in the course of the infection, millions of new virus particles are formed and enclosed in polyhedrin crystals. These crystals re-enter the environment after the insect dies and decomposes, thus becoming available to infect other caterpillars.
One of the attractions of this hypothesis is its broad applicability. Remarkably, despite significant differences in habitat and behavior, many species of lepidoptera have population cycles of similar length, between eight and eleven years. Nuclear polyhedrosis viral infection is one factor these disparate species share.
3. Which of the following, if true, would most weaken the author’s conclusion in lines 18-22?
CorrectIncorrect -
Question 4 of 6
4. Question
A small number of the forest species of lepidoptera (moths and butterflies, which exist as caterpillars during most of their life cycle) exhibit regularly recurring patterns of population growth and decline-such fluctuations in population are known as population cycles. Although many different variables influence population levels, a regular pattern such as a population cycle seems to imply a dominant, driving force. ldentification of that driving force, however, has proved surprisingly elusive despite considerable research. The common approach of studying causes of population cycles by measuring the mortality caused by different agents, such as predatory birds or parasites, has been unproductive in the case of lepidoptera. Moreover, population ecologists’ attempts to alter cycles by changing the caterpillars’ habitat and by reducing caterpillar populations have not succeeded. ln short, the evidence implies that these insect populations, if not self-regulating, may at least be regulated by an agent more intimately connected with the insect than are predatory birds or parasites.
Recent work suggests that this agent may be a virus. For many years, viral disease had been reported in declining populations of caterpillars, but population ecologists had usually considered viral disease to have contributed to the decline once it was underway rather than to have initiated it. The recent work has been made possible by new techniques of molecular biology that allow viral DNA to be detected at low concentrations in the environment. Nuclear polyhedrosis viruses are hypothesized to be the driving force behind population cycles in lepidoptera in part because the viruses themselves follow an infectious cycle in which, if protected from direct sunlight, they may remain virulent for many years in the environment, embedded in durable crystals of polyhedrin protein. 0nce ingested by a caterpillar, the crystals dissolve, releasing the virus to infect the insect’s cells. Late in the course of the infection, millions of new virus particles are formed and enclosed in polyhedrin crystals. These crystals re-enter the environment after the insect dies and decomposes, thus becoming available to infect other caterpillars.
One of the attractions of this hypothesis is its broad applicability. Remarkably, despite significant differences in habitat and behavior, many species of lepidoptera have population cycles of similar length, between eight and eleven years. Nuclear polyhedrosis viral infection is one factor these disparate species share.
4. According to the passage, before the discovery of new techniques for detecting viral DNA, population ecologists believed that viral diseases
CorrectIncorrect -
Question 5 of 6
5. Question
A small number of the forest species of lepidoptera (moths and butterflies, which exist as caterpillars during most of their life cycle) exhibit regularly recurring patterns of population growth and decline-such fluctuations in population are known as population cycles. Although many different variables influence population levels, a regular pattern such as a population cycle seems to imply a dominant, driving force. ldentification of that driving force, however, has proved surprisingly elusive despite considerable research. The common approach of studying causes of population cycles by measuring the mortality caused by different agents, such as predatory birds or parasites, has been unproductive in the case of lepidoptera. Moreover, population ecologists’ attempts to alter cycles by changing the caterpillars’ habitat and by reducing caterpillar populations have not succeeded. ln short, the evidence implies that these insect populations, if not self-regulating, may at least be regulated by an agent more intimately connected with the insect than are predatory birds or parasites.
Recent work suggests that this agent may be a virus. For many years, viral disease had been reported in declining populations of caterpillars, but population ecologists had usually considered viral disease to have contributed to the decline once it was underway rather than to have initiated it. The recent work has been made possible by new techniques of molecular biology that allow viral DNA to be detected at low concentrations in the environment. Nuclear polyhedrosis viruses are hypothesized to be the driving force behind population cycles in lepidoptera in part because the viruses themselves follow an infectious cycle in which, if protected from direct sunlight, they may remain virulent for many years in the environment, embedded in durable crystals of polyhedrin protein. 0nce ingested by a caterpillar, the crystals dissolve, releasing the virus to infect the insect’s cells. Late in the course of the infection, millions of new virus particles are formed and enclosed in polyhedrin crystals. These crystals re-enter the environment after the insect dies and decomposes, thus becoming available to infect other caterpillars.
One of the attractions of this hypothesis is its broad applicability. Remarkably, despite significant differences in habitat and behavior, many species of lepidoptera have population cycles of similar length, between eight and eleven years. Nuclear polyhedrosis viral infection is one factor these disparate species share.
5. According to the passage, nuclear polyhedrosis viruses can remain virulent in the environment only when
CorrectIncorrect -
Question 6 of 6
6. Question
A small number of the forest species of lepidoptera (moths and butterflies, which exist as caterpillars during most of their life cycle) exhibit regularly recurring patterns of population growth and decline-such fluctuations in population are known as population cycles. Although many different variables influence population levels, a regular pattern such as a population cycle seems to imply a dominant, driving force. ldentification of that driving force, however, has proved surprisingly elusive despite considerable research. The common approach of studying causes of population cycles by measuring the mortality caused by different agents, such as predatory birds or parasites, has been unproductive in the case of lepidoptera. Moreover, population ecologists’ attempts to alter cycles by changing the caterpillars’ habitat and by reducing caterpillar populations have not succeeded. ln short, the evidence implies that these insect populations, if not self-regulating, may at least be regulated by an agent more intimately connected with the insect than are predatory birds or parasites.
Recent work suggests that this agent may be a virus. For many years, viral disease had been reported in declining populations of caterpillars, but population ecologists had usually considered viral disease to have contributed to the decline once it was underway rather than to have initiated it. The recent work has been made possible by new techniques of molecular biology that allow viral DNA to be detected at low concentrations in the environment. Nuclear polyhedrosis viruses are hypothesized to be the driving force behind population cycles in lepidoptera in part because the viruses themselves follow an infectious cycle in which, if protected from direct sunlight, they may remain virulent for many years in the environment, embedded in durable crystals of polyhedrin protein. 0nce ingested by a caterpillar, the crystals dissolve, releasing the virus to infect the insect’s cells. Late in the course of the infection, millions of new virus particles are formed and enclosed in polyhedrin crystals. These crystals re-enter the environment after the insect dies and decomposes, thus becoming available to infect other caterpillars.
One of the attractions of this hypothesis is its broad applicability. Remarkably, despite significant differences in habitat and behavior, many species of lepidoptera have population cycles of similar length, between eight and eleven years. Nuclear polyhedrosis viral infection is one factor these disparate species share.
6. It can be inferred from the passage that while inside its polyhedrin protein crystals, the nuclear polyhedrosis virus
CorrectIncorrect