LSAT 68 RC2 2x
Quiz Summary
0 of 7 Questions completed
Questions:
Information
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
Results
Results
0 of 7 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Average score | |
Your score |
Categories
- Not categorized 0%
Review these RC quizzes right after you do them. For anything that you’re not 100% on google the first bunch of words of the question and seek out explanations online. If after spending some time reviewing you’re still having a tough time then bring the question to your next tutoring session. Really fight to understand the logic of these questions. Remember: 1 is correct 4 are incorrect. Really push yourself to be black and white with correct v. incorrect. It is extremely rare that two answer choices are technically OK but one is stronger. It can happen but we’re talking 1% of the time. So, with that in mind let’s have the mindset that it never happens and that we need to be binary: 1 correct. 4 incorrect. That mindset is key to improvement.
Answer key:
LSAT 68 RC2 Q1 – C
LSAT 68 RC2 Q2 – A
LSAT 68 RC2 Q3 – B
LSAT 68 RC2 Q4 – A
LSAT 68 RC2 Q5 – B
LSAT 68 RC2 Q6 – A
LSAT 68 RC2 Q7 – D
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- Current
- Review
- Answered
- Correct
- Incorrect
- Question 1 of 7
1. Question
The characteristic smell or taste of a plant, to insects as well as to humans, depends on its chemical composition. Broadly speaking, plants contain two categories of chemical substances: primary and secondary. The primary substances, such as proteins, carbohydrates, vitamins, and hormones, are required for growth and proper functioning and are found in all plants. The secondary substances are a diverse and multitudinous array of chemicals that have no known role in the internal chemical processes of plants’ growth or metabolism. Only a few of these substances occur in any one species of plant, but the same or similar ones tend to occur in related plants such as the various species that constitute a single family. It is these secondary substances that give plants their distinctive tastes and smells.
Insects appear to have played a major role in many plants’ having the secondary substances they have today. Such substances undoubtedly first appeared, and new ones continue to appear, as the result of genetic mutations in individual plants. But if a mutation is to survive and be passed on to subsequent generations, it must pass the muster of natural selection-that is, it must increase the likelihood of the organism’s surviving and reproducing. Some secondary substances are favored by natural selection because they are scents that attract pollinating insects to blossoms. Such scents signal the presence of nectar, which nourishes the insects without damage to the plants. Other secondary substances that arose by mutation were conserved by natural selection because they proved to be biochemical defenses against the enemies of plants, the majority of which are insects. Some of these defensive substances cause insects to suffer unpleasant symptoms or even to die. Still other secondary substances are not in themselves harmful to insects, but are characteristic smells or tastes that dissuade the insect from feeding by warning it of the presence of some other substance that is harmful.
For hundreds of millions of years there has been an evolutionary competition for advantage between plants and plant-eating insects. If insects are to survive as the plants they eat develop defenses against them, they must switch to other foods or evolve ways to circumvent the plants’ defenses. They may evolve a way to detoxify a harmful substance, to store it in their bodies out of harm’s way, or to avoid its effects in some other manner. Insects quickly come to prefer the plants whose defenses they can circumvent, and they eventually evolve the ability to identify them by their characteristic flavors or odors, or both. As the competition has progressed, fewer and fewer plants have remained as suitable food sources for any one species of insect; species of insects have thus tended to become associated with narrowly defined and often botanically restricted groups of plants.
1. Which one of the following most accurately expresses the main point of the passage?
CorrectIncorrect - Question 2 of 7
2. Question
The characteristic smell or taste of a plant, to insects as well as to humans, depends on its chemical composition. Broadly speaking, plants contain two categories of chemical substances: primary and secondary. The primary substances, such as proteins, carbohydrates, vitamins, and hormones, are required for growth and proper functioning and are found in all plants. The secondary substances are a diverse and multitudinous array of chemicals that have no known role in the internal chemical processes of plants’ growth or metabolism. Only a few of these substances occur in any one species of plant, but the same or similar ones tend to occur in related plants such as the various species that constitute a single family. It is these secondary substances that give plants their distinctive tastes and smells.
Insects appear to have played a major role in many plants’ having the secondary substances they have today. Such substances undoubtedly first appeared, and new ones continue to appear, as the result of genetic mutations in individual plants. But if a mutation is to survive and be passed on to subsequent generations, it must pass the muster of natural selection-that is, it must increase the likelihood of the organism’s surviving and reproducing. Some secondary substances are favored by natural selection because they are scents that attract pollinating insects to blossoms. Such scents signal the presence of nectar, which nourishes the insects without damage to the plants. Other secondary substances that arose by mutation were conserved by natural selection because they proved to be biochemical defenses against the enemies of plants, the majority of which are insects. Some of these defensive substances cause insects to suffer unpleasant symptoms or even to die. Still other secondary substances are not in themselves harmful to insects, but are characteristic smells or tastes that dissuade the insect from feeding by warning it of the presence of some other substance that is harmful.
For hundreds of millions of years there has been an evolutionary competition for advantage between plants and plant-eating insects. If insects are to survive as the plants they eat develop defenses against them, they must switch to other foods or evolve ways to circumvent the plants’ defenses. They may evolve a way to detoxify a harmful substance, to store it in their bodies out of harm’s way, or to avoid its effects in some other manner. Insects quickly come to prefer the plants whose defenses they can circumvent, and they eventually evolve the ability to identify them by their characteristic flavors or odors, or both. As the competition has progressed, fewer and fewer plants have remained as suitable food sources for any one species of insect; species of insects have thus tended to become associated with narrowly defined and often botanically restricted groups of plants.
2. Which one of the following is mentioned in the passage as a way in which insects can adapt when a plant develops defenses against them?
CorrectIncorrect - Question 3 of 7
3. Question
The characteristic smell or taste of a plant, to insects as well as to humans, depends on its chemical composition. Broadly speaking, plants contain two categories of chemical substances: primary and secondary. The primary substances, such as proteins, carbohydrates, vitamins, and hormones, are required for growth and proper functioning and are found in all plants. The secondary substances are a diverse and multitudinous array of chemicals that have no known role in the internal chemical processes of plants’ growth or metabolism. Only a few of these substances occur in any one species of plant, but the same or similar ones tend to occur in related plants such as the various species that constitute a single family. It is these secondary substances that give plants their distinctive tastes and smells.
Insects appear to have played a major role in many plants’ having the secondary substances they have today. Such substances undoubtedly first appeared, and new ones continue to appear, as the result of genetic mutations in individual plants. But if a mutation is to survive and be passed on to subsequent generations, it must pass the muster of natural selection-that is, it must increase the likelihood of the organism’s surviving and reproducing. Some secondary substances are favored by natural selection because they are scents that attract pollinating insects to blossoms. Such scents signal the presence of nectar, which nourishes the insects without damage to the plants. Other secondary substances that arose by mutation were conserved by natural selection because they proved to be biochemical defenses against the enemies of plants, the majority of which are insects. Some of these defensive substances cause insects to suffer unpleasant symptoms or even to die. Still other secondary substances are not in themselves harmful to insects, but are characteristic smells or tastes that dissuade the insect from feeding by warning it of the presence of some other substance that is harmful.
For hundreds of millions of years there has been an evolutionary competition for advantage between plants and plant-eating insects. If insects are to survive as the plants they eat develop defenses against them, they must switch to other foods or evolve ways to circumvent the plants’ defenses. They may evolve a way to detoxify a harmful substance, to store it in their bodies out of harm’s way, or to avoid its effects in some other manner. Insects quickly come to prefer the plants whose defenses they can circumvent, and they eventually evolve the ability to identify them by their characteristic flavors or odors, or both. As the competition has progressed, fewer and fewer plants have remained as suitable food sources for any one species of insect; species of insects have thus tended to become associated with narrowly defined and often botanically restricted groups of plants.
3. In the passage, the author discusses primary substances mainly in order to
CorrectIncorrect - Question 4 of 7
4. Question
The characteristic smell or taste of a plant, to insects as well as to humans, depends on its chemical composition. Broadly speaking, plants contain two categories of chemical substances: primary and secondary. The primary substances, such as proteins, carbohydrates, vitamins, and hormones, are required for growth and proper functioning and are found in all plants. The secondary substances are a diverse and multitudinous array of chemicals that have no known role in the internal chemical processes of plants’ growth or metabolism. Only a few of these substances occur in any one species of plant, but the same or similar ones tend to occur in related plants such as the various species that constitute a single family. It is these secondary substances that give plants their distinctive tastes and smells.
Insects appear to have played a major role in many plants’ having the secondary substances they have today. Such substances undoubtedly first appeared, and new ones continue to appear, as the result of genetic mutations in individual plants. But if a mutation is to survive and be passed on to subsequent generations, it must pass the muster of natural selection-that is, it must increase the likelihood of the organism’s surviving and reproducing. Some secondary substances are favored by natural selection because they are scents that attract pollinating insects to blossoms. Such scents signal the presence of nectar, which nourishes the insects without damage to the plants. Other secondary substances that arose by mutation were conserved by natural selection because they proved to be biochemical defenses against the enemies of plants, the majority of which are insects. Some of these defensive substances cause insects to suffer unpleasant symptoms or even to die. Still other secondary substances are not in themselves harmful to insects, but are characteristic smells or tastes that dissuade the insect from feeding by warning it of the presence of some other substance that is harmful.
For hundreds of millions of years there has been an evolutionary competition for advantage between plants and plant-eating insects. If insects are to survive as the plants they eat develop defenses against them, they must switch to other foods or evolve ways to circumvent the plants’ defenses. They may evolve a way to detoxify a harmful substance, to store it in their bodies out of harm’s way, or to avoid its effects in some other manner. Insects quickly come to prefer the plants whose defenses they can circumvent, and they eventually evolve the ability to identify them by their characteristic flavors or odors, or both. As the competition has progressed, fewer and fewer plants have remained as suitable food sources for any one species of insect; species of insects have thus tended to become associated with narrowly defined and often botanically restricted groups of plants.
4. The passage provides the most support for inferring which one of the following?
CorrectIncorrect - Question 5 of 7
5. Question
The characteristic smell or taste of a plant, to insects as well as to humans, depends on its chemical composition. Broadly speaking, plants contain two categories of chemical substances: primary and secondary. The primary substances, such as proteins, carbohydrates, vitamins, and hormones, are required for growth and proper functioning and are found in all plants. The secondary substances are a diverse and multitudinous array of chemicals that have no known role in the internal chemical processes of plants’ growth or metabolism. Only a few of these substances occur in any one species of plant, but the same or similar ones tend to occur in related plants such as the various species that constitute a single family. It is these secondary substances that give plants their distinctive tastes and smells.
Insects appear to have played a major role in many plants’ having the secondary substances they have today. Such substances undoubtedly first appeared, and new ones continue to appear, as the result of genetic mutations in individual plants. But if a mutation is to survive and be passed on to subsequent generations, it must pass the muster of natural selection-that is, it must increase the likelihood of the organism’s surviving and reproducing. Some secondary substances are favored by natural selection because they are scents that attract pollinating insects to blossoms. Such scents signal the presence of nectar, which nourishes the insects without damage to the plants. Other secondary substances that arose by mutation were conserved by natural selection because they proved to be biochemical defenses against the enemies of plants, the majority of which are insects. Some of these defensive substances cause insects to suffer unpleasant symptoms or even to die. Still other secondary substances are not in themselves harmful to insects, but are characteristic smells or tastes that dissuade the insect from feeding by warning it of the presence of some other substance that is harmful.
For hundreds of millions of years there has been an evolutionary competition for advantage between plants and plant-eating insects. If insects are to survive as the plants they eat develop defenses against them, they must switch to other foods or evolve ways to circumvent the plants’ defenses. They may evolve a way to detoxify a harmful substance, to store it in their bodies out of harm’s way, or to avoid its effects in some other manner. Insects quickly come to prefer the plants whose defenses they can circumvent, and they eventually evolve the ability to identify them by their characteristic flavors or odors, or both. As the competition has progressed, fewer and fewer plants have remained as suitable food sources for any one species of insect; species of insects have thus tended to become associated with narrowly defined and often botanically restricted groups of plants.
5. Which one of the following describes a set of relationships that is most closely analogous to the relationships between plants and their primary and secondary substances?
CorrectIncorrect - Question 6 of 7
6. Question
The characteristic smell or taste of a plant, to insects as well as to humans, depends on its chemical composition. Broadly speaking, plants contain two categories of chemical substances: primary and secondary. The primary substances, such as proteins, carbohydrates, vitamins, and hormones, are required for growth and proper functioning and are found in all plants. The secondary substances are a diverse and multitudinous array of chemicals that have no known role in the internal chemical processes of plants’ growth or metabolism. Only a few of these substances occur in any one species of plant, but the same or similar ones tend to occur in related plants such as the various species that constitute a single family. It is these secondary substances that give plants their distinctive tastes and smells.
Insects appear to have played a major role in many plants’ having the secondary substances they have today. Such substances undoubtedly first appeared, and new ones continue to appear, as the result of genetic mutations in individual plants. But if a mutation is to survive and be passed on to subsequent generations, it must pass the muster of natural selection-that is, it must increase the likelihood of the organism’s surviving and reproducing. Some secondary substances are favored by natural selection because they are scents that attract pollinating insects to blossoms. Such scents signal the presence of nectar, which nourishes the insects without damage to the plants. Other secondary substances that arose by mutation were conserved by natural selection because they proved to be biochemical defenses against the enemies of plants, the majority of which are insects. Some of these defensive substances cause insects to suffer unpleasant symptoms or even to die. Still other secondary substances are not in themselves harmful to insects, but are characteristic smells or tastes that dissuade the insect from feeding by warning it of the presence of some other substance that is harmful.
For hundreds of millions of years there has been an evolutionary competition for advantage between plants and plant-eating insects. If insects are to survive as the plants they eat develop defenses against them, they must switch to other foods or evolve ways to circumvent the plants’ defenses. They may evolve a way to detoxify a harmful substance, to store it in their bodies out of harm’s way, or to avoid its effects in some other manner. Insects quickly come to prefer the plants whose defenses they can circumvent, and they eventually evolve the ability to identify them by their characteristic flavors or odors, or both. As the competition has progressed, fewer and fewer plants have remained as suitable food sources for any one species of insect; species of insects have thus tended to become associated with narrowly defined and often botanically restricted groups of plants.
6. The passage most strongly suggests that which one of the following is true of secondary substances in plants?
CorrectIncorrect - Question 7 of 7
7. Question
The characteristic smell or taste of a plant, to insects as well as to humans, depends on its chemical composition. Broadly speaking, plants contain two categories of chemical substances: primary and secondary. The primary substances, such as proteins, carbohydrates, vitamins, and hormones, are required for growth and proper functioning and are found in all plants. The secondary substances are a diverse and multitudinous array of chemicals that have no known role in the internal chemical processes of plants’ growth or metabolism. Only a few of these substances occur in any one species of plant, but the same or similar ones tend to occur in related plants such as the various species that constitute a single family. It is these secondary substances that give plants their distinctive tastes and smells.
Insects appear to have played a major role in many plants’ having the secondary substances they have today. Such substances undoubtedly first appeared, and new ones continue to appear, as the result of genetic mutations in individual plants. But if a mutation is to survive and be passed on to subsequent generations, it must pass the muster of natural selection-that is, it must increase the likelihood of the organism’s surviving and reproducing. Some secondary substances are favored by natural selection because they are scents that attract pollinating insects to blossoms. Such scents signal the presence of nectar, which nourishes the insects without damage to the plants. Other secondary substances that arose by mutation were conserved by natural selection because they proved to be biochemical defenses against the enemies of plants, the majority of which are insects. Some of these defensive substances cause insects to suffer unpleasant symptoms or even to die. Still other secondary substances are not in themselves harmful to insects, but are characteristic smells or tastes that dissuade the insect from feeding by warning it of the presence of some other substance that is harmful.
For hundreds of millions of years there has been an evolutionary competition for advantage between plants and plant-eating insects. If insects are to survive as the plants they eat develop defenses against them, they must switch to other foods or evolve ways to circumvent the plants’ defenses. They may evolve a way to detoxify a harmful substance, to store it in their bodies out of harm’s way, or to avoid its effects in some other manner. Insects quickly come to prefer the plants whose defenses they can circumvent, and they eventually evolve the ability to identify them by their characteristic flavors or odors, or both. As the competition has progressed, fewer and fewer plants have remained as suitable food sources for any one species of insect; species of insects have thus tended to become associated with narrowly defined and often botanically restricted groups of plants.
7. Based on the passage, the author would be most likely to agree with which one of the following statements about the relationship between plants and insects?
CorrectIncorrect